Example 1. The average monthly temperature for a location in Northern BC as a function of month number can be modelled using the equation $y=a \cos b(x-c)+d$. The highest average monthly temperature is $20^{\circ} \mathrm{C}$ and the lowest average monthly temperature is $-10^{\circ} \mathrm{C}$, which occurs in January (month 0 ) with an annually repeating pattern. The sketch of the graph that models this relationship is shown below.


$$
\text { Total diff }=20--10=30
$$

a) Write an equation that models this relationship. Let your variable represent the day number (as opposed to the month number)

$$
T=-15 \cos \left(\frac{2 \pi}{12} \cdot x\right)+5
$$

average temperature where


$$
T=-15 \cos \left(\frac{2 \pi}{355} x\right)+5
$$

average temperature where $x$ represents day number.
b) What might you expect the average temperature to be on the $60^{\text {th }}$ day of the year?

$$
\begin{aligned}
& x=60 \quad T \\
&=-15 \cos \left(\frac{2 \pi}{355}(60)\right)+5 \\
& T=-2.7^{\circ} \mathrm{C}
\end{aligned}
$$

Example 2: Tides can be thought of as a roughly periodic rise and fall of the ocean's water. On a certain day at the Tsawwassen ferry terminal, a low tide occurred of 3.4 m occurred at 5:30 AM and a high tide of 7.2 m occurred at 12:30 PM. If we assume that the relation between the depth of water and the time is
a sinusoidal function,
a) What is a sinusoidal function that describes the tide flow?
7hours

$$
\begin{aligned}
\text { amplitude } & =\frac{7.2-3.4}{2} \\
& =1.9 \\
\text { v.displ } & =\frac{3.4+7.2}{2} \\
& =5.3
\end{aligned}
$$

full period= 14 hours

$$
\begin{aligned}
& P=\frac{2 \pi}{b} \\
& 14=\frac{2 \pi}{b} \quad \therefore b=\frac{2 \pi}{14}
\end{aligned}
$$

b) What will the height of the tide be at 2 PM .

$$
\begin{aligned}
& D=-1.9 \cos \left(\frac{2 \pi(14-5.5)}{14}\right)+5.3 \\
& D=6.8 \mathrm{~m}
\end{aligned}
$$


at 2.35 hours after midnight, the water is 5 m deep. This is at 2:21 am.


$$
\frac{35}{100} \times 60=21 \text { minutes }
$$

This depth also occurs at 4:21 pm.

Example 2. The London Eye has a diameter of 122 m and a height of 135 m . It completes one rotation in 30 minutes. Because it rotates so slowly, passengers are able to board and exit at the bottom by just walking on or off.

a) Write a sinusoidal function to describe a person's height at any time?
amplitude: $\frac{135-13}{2}=61 \mathrm{~m}$.
period $=30$ minutes .
$v$ displ: $\frac{135+13}{2}=74 \mathrm{~m}$

$$
\begin{aligned}
& P=\frac{2 \pi}{6} \therefore b=\frac{2 \pi}{30} \\
& 30=\frac{2 \pi}{b} \\
& h=-61 \cos \left(\frac{2 \pi}{30}(x)\right)+74 .
\end{aligned}
$$

b) How long after boarding would it take you to reach a height of 100 m ?

$$
\underbrace{100}_{y_{1}}=\underbrace{-61 \cos \left(\frac{2 \pi}{30}(x)\right)+74}_{y_{2}} \text {. }
$$

window: $0<x<30$ (represented by period)

$$
0<y<135 \text { (represents height) }
$$

9.6 minutes

$$
.6 \times 60=36
$$


$9 \min 36$ seconds.

Example 4: Write a sinusoidal function that models the average monthly temperature in Vancouver given the data below. (Given are the average monthly high temperatures)

| Month | $\operatorname{Temp}\left({ }^{\circ} \mathrm{C}\right)$ | Month | $\operatorname{Temp}\left({ }^{\circ} \mathrm{C}\right)$ | Month | $\operatorname{Temp}\left({ }^{\circ} \mathrm{C}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 6 | 5 | 16 | 9 | 18 |
| 2 | 8 | 6 | 19 | 10 | 13 |
| 3 | 9 | 7 | 22 | 11 | 9 |
| 4 | 12 | 8 | 22 | 12 | 6 |

This data can be entered and plotted on your calculator. You can then enter your equation, and see how
well it approximates the data.
(1) Enter Data

STAT $>$ 1: edit
(2) Window Settings
months in LI
temps in $L_{2}$

$$
\begin{array}{ll}
\text { alculator. You can then enter your equation, and see how } \\
\text { Window Settings } \\
0<x<12 & \text { Plot Points. } \\
0<y \text { sTAT PLOT } \\
0<25 & \text { (temp } \\
\text { and } & \text {-turn on }
\end{array}
$$

(4) Find equation.

STAT CALL $C=\sin r e g$.
$\operatorname{Sin}$ Reg $L_{1}, L_{2}$

$$
\left.\begin{array}{l}
a=7.76 \\
b=0.57 \\
c=-2.52 \\
d=13.94
\end{array}\right\} y=7.76 \sin (.57(x-2.52))+13.94
$$

