1.8 Slopes of secants and tangents

For each of the following, write an expression for the slope of the secant through the given point. Then determine the slope of the tangent at the given point.

1.
$$y = x^2 + 5x$$
 at $x = 3$

Mose $= \frac{f(3+h) - f(3)}{h}$
 $= \frac{(3+h)^2 + 5(3+h) - 24}{h}$
 $= \frac{g+6h + h^2 + 15 + 5h - 24}{h}$

3. $y = 7$ at $x = -3$

Monos thin how sumble line.

1. $y = x^2 + 5x$ at $x = 5$

1. $y = x^2 + 5x$ at $x = 5$

1. $y = x^2 + 5x$ at $x = 5$

1. $y = x^2 + 5x$ at $x = 5$

1. $y = x^2 + 5x$ at $x = 5$

1. $y = x^2 + 5x$ at $x = 5$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1. $y = x^2 + 5x$ at $x = 6$

1.