Continuity

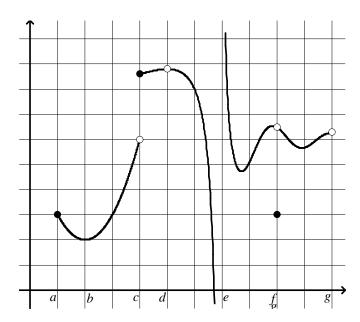
Definition: A function is continuous at an interior point c of an interval [a,b], if and only if, $\lim_{x \to c} f(x) = f(c)$

Note: This definition defines continuity at an interior point of an interval.

In order for a function to be continuous at *a*, the limit must exist and the function has to be defined at *a*

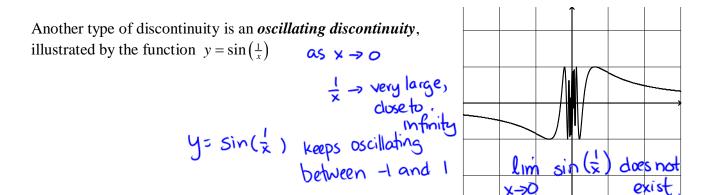
This definition can be extended to define continuity at the left endpoint, a, of an interval:

$$\lim_{x \to a^{+}} f(x) = f(a) \quad \text{or for the right endpoint, } b,: \qquad \lim_{x \to b^{-}} f(x) = f(b)$$



a point can still be continuous if there is only a left or right hand limit

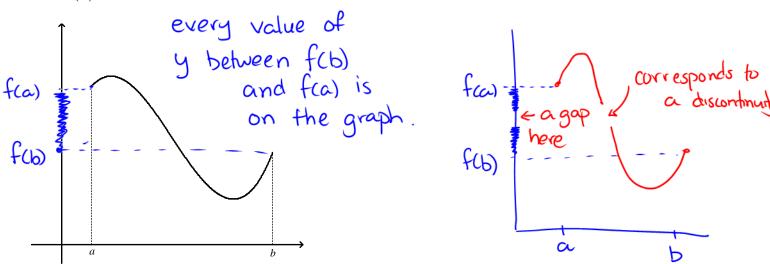
Point	Continuous?	Reason	Type of Discontinuity
a	yes	$\lim_{x\to a^+} f(x) = f(a)$	
b	yes	$\lim_{x\to b} f(x) = f(b)$	
С	No	limit does not exist	jump discontinuity
d	no	fcx) does not exist for x=d	removable discontinuit
e	no	lim f(x) = -00, lim f(x)=00 f(e) does	ot infinite
f	no	$\lim_{x \to f} f(x) \neq f(f)$	removable
g	no	lim f(x) \neq f(g) f(g) does not	removable.
		exist	•



A function is said to be *continuous on an interval* if it is continuous at each point in the interval. A function is continuous if it is continuous at each point in its domain. Thus $y = \sqrt{x}$ and $y = \frac{1}{x}$ are both examples of continuous functions.

The Intermediate Value Theorem for Continuous Functions

If f(x) is a continuous function on the interval [a,b], then f(x) takes on every value between f(a) and f(b)

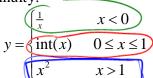


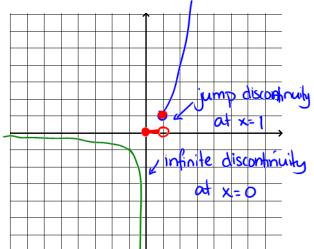
Examples

1. Is any real number exactly 2 more than its cube? Explain.

let the number =
$$x$$
 $x^3+2=x$ $x^3-x+2=0$ is there a solution $x^3-x+2=0$ is a sol

2. For the following function, determine any points of discontinuity and describe the type of





3. Give a formula for the extended function that is continuous at the indicated point.

$$y = \frac{x-4}{\sqrt{x}-2} \cdot \frac{\sqrt{x+2}}{\sqrt{x+2}}$$
 at $x = 4$

find the limit

$$\lim_{x \to 4} f(x) = f(4)$$

 $= \frac{(x-4)(\sqrt{x}+2)}{x-34}$ $= \frac{(x-4)(\sqrt{x}+2)}{$

Determine the value of k so that the function is continuous hole at (4,4) $y = \begin{cases} kx^2 - 1 & x \le 2 \\ -3x + 7 & x > 2 \end{cases}$ right hand limit 4.

$$y = \begin{cases} kx^2 - 1 & x \le 2\\ -3x + 7 & x > 2 \end{cases}$$

$$-3x+7 \qquad x>2 \qquad \text{right hand limit} \qquad \qquad \text{as confinuous}$$

$$k(2)^2-1 = -3(2)+7 \qquad \text{confinuous} \quad \text{if the left piece}$$

$$4k-1 = 1$$

$$4k=2 \qquad \qquad \text{D180 #1-9 odd}$$