11.3B Warmup

- 1. Expand: $(2x y)^4$
- 2. Express the expansion of $(2x-y)^4$ using combinations.

$$4(a)^{4} + 4(a^{3}b + 4(2a^{2}b^{2} + 4(3ab^{3} + 4(4b^{4})^{4}))$$

 $4(a(2x)^{4} + 4(1(2x)^{3}(-y) + 4(2(2x)^{2}(-y)^{2} + 4(3(2x)(-y)^{3} + 4(4(-y)^{4}))$

3. Simplify: $(a+2b)^3 - (a-2b)^3$

4. How many terms are there in the expansion of $(2x-y)^{15}$?

5. What would the 10^{th} term in the expansion of $(2x-y)^{15}$ be?

11.3B The Binomial Theorem

Visualizing – The Binomial Expansion of $(a + b)^4$

The Binomial Theorem (using combinations)

For any whole number *n*:

$$(a+b)^n = {}_{n}C_0 a^n b^0 + {}_{n}C_1 a^{n-1} b^1 + {}_{n}C_2 a^{n-2} b^2 + \dots + {}_{n}C_k a^{n-k} b^k + \dots + {}_{n}C_n a^0 b^n$$

 1^{st} term 2^{nd} term 3^{rd} term term $(n+1)^{\text{th}}$ term

For this expansion the general term is: $t_{k+1} = \frac{n \cdot k}{n \cdot k} \left(\frac{a}{a} \right)^{n-k} \left(\frac{b}{b} \right)^k$

Example 1: Write the first four terms of the binomial expansion of $(x + 2y)^{12}$.

1st term 2nd term 3rd term
$$k=1$$
 $k=2$ $k=0$ $12C_1(x)^{12-1}(2y)$ $12C_2(x)^{12-2}(2y)^2$

Example 2: Determine the 5th term in the expansion of $(x-3)^9$.

$$k=4$$

$$t_{k+1} = n(x(x)^{n-k}(y)^{k})$$

$$t_{5} = q(4(x)^{5}(-3)^{4})$$

$$+_{K+1} = nC_K (1)^{n-k} (-2x)^k$$

$$= 12(3 (1)^{12-3} (-2x)^3$$

$$= 220 (1)^9 (-8x^3)$$

$$= -1760x^3$$

Example 4 One term in the expansion of $(x + a)^8$ is $448x^6$. Determine the value of a.

$$n(x'(x)^{n-k}(a)^k = 448x^6$$

 $8C_2(x)^6(a)^2 = 448x^6$
 $28x^6 \cdot a^2 = 448x^6$
 $28a^2x^6 = 448x^6$
 $a^2 = 16$
 $a = \pm 4$

Example 5 The 4th term in the expansion of $(x - \frac{1}{2})^n$ is $-15x^7$. Determine n.

$$k = 3$$
 $n(x(x)^{n-x}(-\frac{1}{2})^{x}$
 $(-\frac{1}{2})^{x}$

$$n-3 = 7$$

$$n = 10$$

Example 6 Determine the constant term in the expansion of $\left(x^2 - \frac{1}{x}\right)^6$

6CK
$$(x^{2})^{6-k}$$
 $(-\frac{1}{x})^{k}$
6C₄ $(x^{2})^{2}$ $(-\frac{1}{x})^{4}$ Constant term = 15
15 (x^{4}) $(\frac{1}{x^{4}})$ P542 #1-21

Combinatorics Review Warmup

1. How many arrangements of the letters in the word SCHOOLS are there if

a) there are no restrictions	b) the letter S must be at the end	c) the two O's must be together

2. How many five card hands are possible from a standard 52 card deck

a) containing exactly 3 clubs	b) containing 2 jacks, 2 aces and one other card	c) containing exactly 4 red cards	d) containing at least 3 red cards
-------------------------------	--	-----------------------------------	------------------------------------

3. Solve for n:

5. Solve 101 //.		
a) $_{n}P_{2} = 56$	b) $\frac{n!}{80} = (n-1)!$	c) $_{n}C_{2}=28$

4. How many routes from A to B if you are always moving to get closer to B?

Combinatorics Review

- 1. Simplify: $\frac{n(n+1)!}{(n-1)!}$
- 2. In the expansion of $(2a-3b)^6$, find the coefficient of the term containing a^4b^2
- 3. Solve for $n: \frac{(n-1)!}{(n-3)!} = 30$
- 4. A coach must choose 3 out of 10 players for a tie-breaking penalty shot. If the coach must designate the order of the 3 players, how many arrangements are possible?
- 5. Determine the fourth term in the expansion $(x-2y)^5$
- 6. Express $_{33}C_5$ in factorial notation
- 7. There are 10 boys and 20 girls in a class. How many committees of 3 are possible if a committee contains 1 boy and 2 girls?
- 8. How many ways can a committee of 3 people be selected from a class of 30? How many ways can an executive committee (Pres., Vice Pres, Secretary) be selected from this class?
- 9. A toy box has 5 different cars and 6 different trucks.
 - a) How many ways can 5 toys be chosen if there are 2 cars and 3 trucks?
 - b) How many ways can 5 toys be chosen if there are at least 3 cars?

10. Assuming that you are always moving closer to *B*, how many paths are there from *A* to *B*?

- 11. What is the 5th number in the 27th row of Pascal's triangle?
- 12. Given TSAWWASSEN, how many permutations are there
 - a) without restrictions
 - b) if the first letter must be S
 - c) the three S's are together
- 13. Find the 7th term in the expansion $(3x-2y)^{15}$

Combinatorics Review Warmup

1. How many arrangements of the letters in the word SCHOOLS are there if

a) there are no restrictions	b) the letter S must be at the end	c) the two O's must be together

2. How many five card hands are possible from a standard 52 card deck

a)	containing exactly 3 clubs	b) containing 2 jacks, 2 aces and one other card	c) containing exactly 4 red cards	d) containing at least 3 red cards

3. Solve for n:

		_	_	
a)	$_{n}P_{2}$	=	= 5	6

b)
$$\frac{n!}{80} = (n-1)!$$

c)
$$_{n}C_{2} = 28$$

4. How many routes from A to B if you are always moving to get closer to B?

Combinatorics Review

- 1. Simplify: $\frac{n(n+1)!}{(n-1)!}$
- 2. In the expansion of $(2a-3b)^6$, find the coefficient of the term containing a^4b^2
- 3. Solve for $n: \frac{(n-1)!}{(n-3)!} = 30$
- 4. A coach must choose 3 out of 10 players for a tie-breaking penalty shot. If the coach must designate the order of the 3 players, how many arrangements are possible?
- 5. Determine the fourth term in the expansion $(x-2y)^5$
- 6. Express $_{33}C_5$ in factorial notation
- 7. There are 10 boys and 20 girls in a class. How many committees of 3 are possible if a committee contains 1 boy and 2 girls?
- 8. How many ways can a committee of 3 people be selected from a class of 30? How many ways can an executive committee (Pres., Vice Pres, Secretary) be selected from this class?
- 9. A toy box has 5 different cars and 6 different trucks.
 - a) How many ways can 5 toys be chosen if there are 2 cars and 3 trucks?
 - b) How many ways can 5 toys be chosen if there are at least 3 cars?

10. Assuming that you are always moving closer to *B*, how many paths are there from *A* to *B*?

- 11. What is the 5th number in the 27th row of Pascal's triangle?
- 12. Given TSAWWASSEN, how many permutations are there
 - a) without restrictions
 - b) if the first letter must be S
 - c) the three S's are together
- 13. Find the 7th term in the expansion $(3x-2y)^{15}$