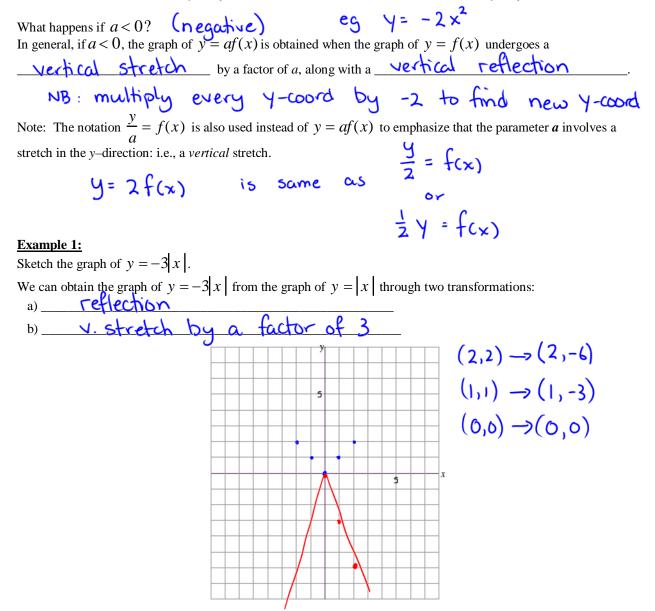
Stretching Graphs of Functions

1. Comparing the graphs of
$$y = f(x)$$
 and $\frac{f(x)}{y} = c f(x)$

a) Complete the following tables of values by first rewriting the equation with the indicated substitution and then solving the equation for *y*. The first one is completed for you.

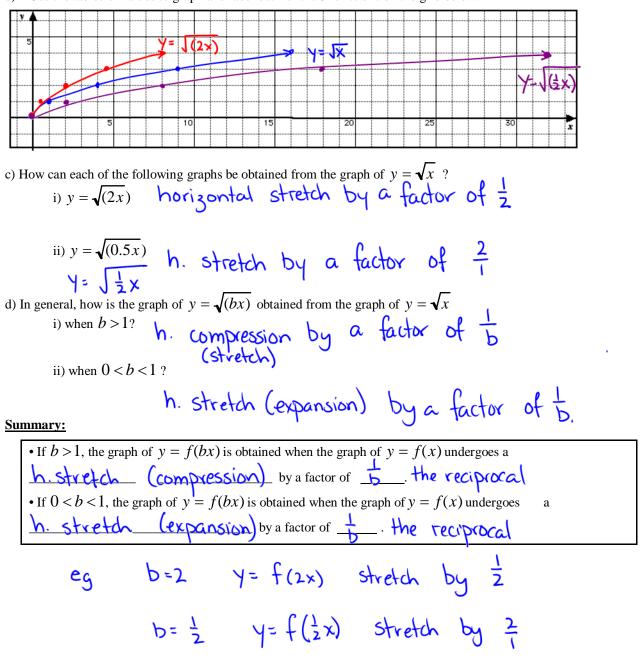
$y = x^2$			$y = 2x^2$			$y = \frac{1}{2}x^2$		
x	у	$\begin{array}{c} x \\ -3 \\ -2 \\ -1 \\ 0 \\ 1 \\ 2 \\ 3 \end{array}$	у		$\begin{array}{c c} x \\ -3 \\ -2 \\ -1 \\ 0 \\ 1 \\ 2 \\ 3 \end{array}$	у		
$\frac{x}{-3}$ -2 -1 0 1 2 3	9	-3	18		-3	4.5		
-2	4	-2	8		-2	2		
-1	1	-1	2		-1	.5		
0	0	0	0		0	0		
1	1	1	2		1	.5		
2	4	2	8		2	2		
3	9	3	18		3	4.5		

b) Use the tables of values to graph and label each of the 3 functions on the grid below.


ii)
$$y = \frac{1}{2}x^2$$
 v. stretch by a factor of $\frac{1}{2}$
(all y-coords are $\times \frac{1}{2}$)

d) In general, how is the graph of $y = ax^2$ obtained from the graph of $y = x^2$ i) when a > 1? ii) when 0 < a < 1?

a stretch that increases a stretch that size (expansion) decreases size (compression) Summary:


• If $a > 1$, the graph of $y = af(x)$ is obtained when the graph of $y = f(x)$ undergoes a								
vertical str	etch (expansion) by a factor of a.							
• If $0 < a < 1$, the graph of $y = af(x)$ is obtained when the graph of $y = f(x)$ undergoes a								
vertical str	etch (compression) by a factor of a.							

Remember that the y-values of y = af(x) are obtained by multiplying each y-value of y = f(x) by the factor a.

2. Comparing the graphs of $y = f(x)$ and $y = f(ax)$										
a) Complete the following tables of values. The first one is completed for you.										
$y = \sqrt{x}$		<i>y</i> =	$y = \sqrt{2x}$ $y = \sqrt{2x}$		(0.5x) or y= 12x					
<u></u>	<u>y</u>	<u>x</u>	<u>y</u>	<u></u>	<u>y</u>					
16	4	8	4	32	4					
9	3	4.5	3	18	3					
4	2	2	2	8	2					
1	1	0.5	1	2	1					
0	0	0	0	0	0					

b) Use the tables of values to graph and label each of the 3 functions on the grid below.

Notice from your tables that for $y = \sqrt{2x}$ to have the same y-values as $y = \sqrt{x}$, the corresponding x-values of $y = \sqrt{2x}$ must be divided by the factor 2.

Thus in general, for y = f(bx) to have the same y-values as y = f(x), the corresponding x-values of y = f(bx) must be divided by the factor b.

In other words, if b > 1, it takes "less x" to do the job of building the function y = f(bx), so we have a horizontal *compression* of y = f(x). * you need a stretch to compensate for the coefficient you put in.

Also, if 0 < b < 1, it takes "more x" to do the job of building the function y = f(bx), so we have a horizontal *expansion* of y = f(x).

What happens if b < 0?

In general, if b < 0, the graph of y = f(bx) is obtained when the graph of y = f(x) undergoes a <u>horizontal</u>

stretch by a factor of
$$\frac{1}{b}$$
, along with a reflection in the y-axis,
or as coordinate, x is multiplied by the
negative reciprocal.

Example 2:

The grid below contains the graph of a function y = f(x). Sketch the graph of $y = f(-\frac{1}{3}x)$. multiply each x (1,4) → (-3,4) (2,1) → (-6,1) (3,5) → (-9,5) (4,0)->(-12,6)

Example 3: The graph of $y = \sqrt{9 - x^2}$ is shown to the right. Sketch the graph of $2y = \sqrt{9 - x^2}$. 5 6,1.5) $y = \frac{1}{2} \int 9 - \chi^2$ $(B_1 p)$ V. stretch by 1/2 (-3,0)Sketch the graph of $V = \sqrt{9 - (2x)^2}$ (0,3) $X \rightarrow 2X$ (1.5,0) (-1.5,0) h. stretch (compression) by a factor of ½ h.stretch by 2 v. stretch by 2 y=f(x) $y=\left(\frac{1}{2}x\right)^{2}$ $y = \chi^2$ $Y = 2 \cdot x^2$ $y = 2 \cdot \frac{1}{x}$ or $y = \frac{2}{x}$ $y=\frac{1}{(\frac{1}{2}x)}$ $Y = \frac{1}{x}$ Y= (x+3)2 $y = 2(x+3)^2$ $y = (\frac{1}{2}x + 3)$