9.3 Warmup

Analyse each of the functions below and then match the equations with their corresponding graphs. Do not

a)
$$y = \frac{-2(x^2 + 1)}{x^2 - 4}$$

$$x = \pm 2$$
v. asymptotes

end behaviour
$$y = \frac{-2x^2}{x^2} = -2$$

b)
$$y = \frac{-2x^2}{x^3 - 4x}$$

NPV: $x \neq 0, \pm 2$

P.oD asympton

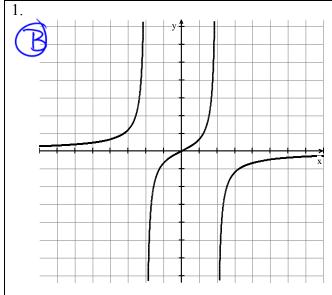
c)
$$y = \frac{x^3}{2x^2 - 8}$$

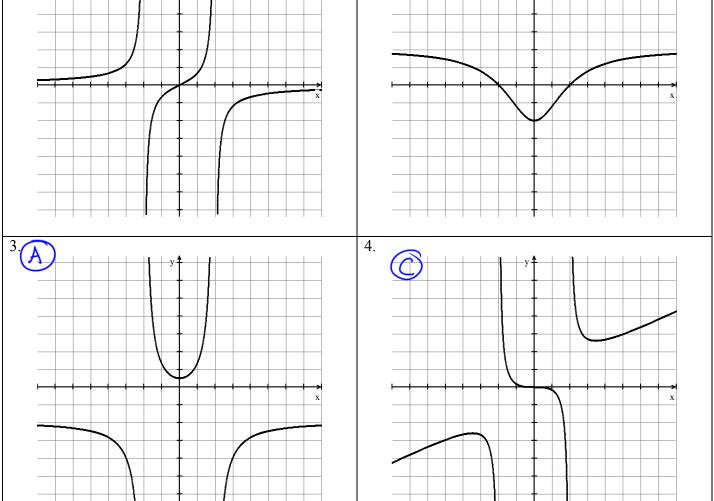
NPV. $2(x^2 - 4)$

2(x+2)(x-2)

es $x \neq \pm 2$

asymptotes


d)
$$y = \frac{2x^2 - 8}{x^2 + 4}$$


$$NPV: x^2 + 4 = 0$$

$$x^2 = -4$$

$$no solution$$

$$no NPV$$

9.3 Rational Equations

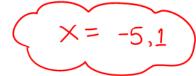
- 1. Find the roots to the equation $\frac{8}{x+1} 3 = x$ a) algebraically
 - - b) graphically

a) Algebraically

- y1 = one side } Solution
 y2 = other side } intersection
- Determine the non-permissible values first. If a solution matches one of the excluded values, it must be extraneous, and thus discarded.

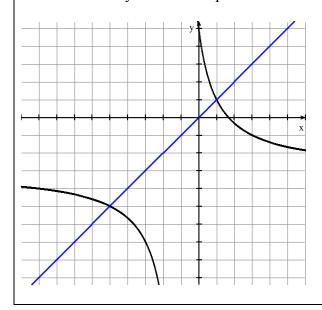
Convert everything to a common denominator and then remove the denominator or multiply

everything by a common denominator.

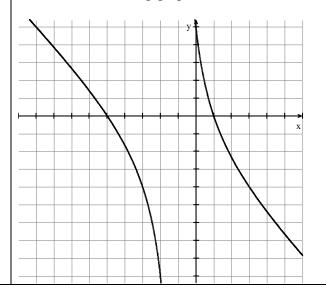

$$\frac{8(x+1)}{3(x+1)} = \frac{x(x+1)}{1}$$

$$(8) - (3x+3) = (x^{2}+x)$$

$$5-3x = x^{2}+x$$


$$0 = x^{2}+4x-5$$

b) Graphical solution
$$O = (x+5)(x-1)$$


- - Intersection method

Graph the two sides of the equation and find the x coordinate of any intersection points.

Zero Method

Move everything to one side of the equation and then graph only this one function. Find the zeros of the resulting graph.

2. Solve:
$$2 - \frac{3x}{2} = \frac{1 + 4x - x^2}{4x + 10}$$
 a) algebraically b) graphically

LCM
$$2(2x+5)$$

$$2 2(2x+5)$$

$$2 2(2x+5)$$

$$2 3 \times (2)(2x+5)$$

$$2 (1+4x-x^2)(x)(2x+5)$$

$$2 (2x+5)$$

$$2 ($$

3. Solve:
$$\frac{x+3}{2x-6} = 2x - \frac{x}{3-x}$$
 a) algebraically b) graphically
$$\frac{x+3}{2(x-3)} = -1(x-3)$$
 NPV: $x \neq 3$ LCM= $-2(x-3)$

$$NPV: x \neq 3 \qquad LCM = -2(x-3)$$

$$\frac{x+3}{2(x-3)} = \frac{2x(-2)(x-3)}{1} - \frac{x(-2)(x-3)}{(x-2)(x-3)}$$

$$(-1)(x+3) = 2x(-2)(x-3) - 2x$$

$$-x-3 = -4x^2 + 12x - 2x$$

$$-x-3 = -4x^2 + 10x$$

$$4x^2 - 11x - 3 = 0$$

$$4x^2 - 12x + x - 3 = 0$$

$$4x(x-3) + 1(x-3) = 0$$

$$NPV: x \neq 3$$

$$(4x+1)(x-3) = 0$$

$$X = -\frac{1}{4}$$

4.	It usually takes Dan five days to get a quote on the board. Working together with Matthew, one of them is usually able to get a quote every 3 days. How many days on average does it take for Matthew to get on the Quote Board?
5.	Matthew currently has 25 of the 120 quotes over the year. He has set a goal of obtaining 80% of the quotes for the rest of the year. How many quotes would have to be made so that he could end the year off with 50% of the year's quotes?