Logarithmic and Exponential Functions Review

Part A. No calculators allowed.

(109,5)(109,3)

	5.	Evaluate: $\log_5 \sqrt{5^3} = \chi$
8	١.	A. $\frac{1}{6}$ $5^{\times} = \sqrt{5^3}$
		B. $\frac{2}{3}$
		$\frac{C. \frac{3}{2}}{D. 6}$ = $\frac{3}{2}$
	6.	1 0-1
	0.	Solve: $\log_2(\log_2(1+6)) = 1$
8.	١ (Solve: $\log_2(\log_2(\log_2(x+6)) = 1$ A. 2 B. 3 C. 2, 3 D2, 3 $\times -2 = 109 \times 100 \times $
		X = 0
	7.	Determine the domain of $y = \log(x+1)$. Can't have a negative
8.	1	A. $x < 1$ X+1 >0 base B. $x > 1$
		$\begin{array}{c c} C. & x < -1 \\ D. & x > -1 \end{array}$

	8.	Determine an equivalent expression for $\log \frac{100a^2}{\sqrt{b}}$.
		$\times 2\log 100a - \frac{1}{2}\log b$ $\log 1000^2 - \log \sqrt{5}$
8	3	X. $2\log 100a - \frac{1}{2}\log b$ $\log 1000a^2 - \log 100$ C. $4\log a - \frac{1}{2}\log b$ $\log 1000 + \log a - \log b$
•		$\times \frac{100 + 2 \log a - \frac{1}{2} \log b}{100 + 2 \log a - \frac{1}{2} \log b}$ $\log 100 + 2 \log a - \frac{1}{2} \log b$
		2 + 2/0ga- 1/0gb
	9.	Evaluate: $\log_{\sqrt{7}} 7^3$
0.1		A. $\frac{2}{3}$ B. $\frac{3}{2}$ $= 7$ $= 7$ $= 7$
9.	1	$\mathbf{p} = 3$
		$\frac{B}{2}$
		$ \begin{array}{ccc} \hline \text{C. 6} & \left(\frac{1}{2} \right) & = 7 \end{array} $
		D. 9
	10.	As an iceberg melts during the summer, it loses 3% of its mass every 5 days. This iceberg
		reduces to 40% of its original mass after t days. Which equation could be used to determine the value of t ?
		numerator is actual amount of
		the value of t ? A. $40 = 100(0.97)^{\frac{t}{5}}$ numerator is actual amount of time, not part of
		5 to 1000 07 5
		B. $40 = 100(0.97)^{\overline{t}}$
		C. $40 - 100(1.03)^5$
		D. $40 = 160(1.03)^{\frac{5}{t}}$

$$2^{-2} = 4$$

Solve:
$$\log_2(\log_9 x) = -1$$

A.
$$\frac{1}{81}$$

B.
$$\frac{1}{3}$$

$$2^{-1} = \log_9 X$$

$$\frac{1}{2} = \log_q X$$

$$9^{\frac{1}{2}} = X$$

12. Solve:
$$5^{x+1} = 2(3^{2x})$$

$$\log 5^{x+1} = \log(2.3^{2x})$$

$$x = \frac{-\log 5}{1 - 2\log 6}$$

$$x = \frac{-\log 5}{\log 5 - 2\log 6}$$

C.
$$x = \frac{\log 2 - \log 5}{1 - 2\log 3}$$

D.
$$\kappa = \frac{\log 2 - \log 5}{\log 5 - 2\log 3}$$

$$(x+1)(\log 5) = \log 2 + 2x \log 3$$

$$\times \log 5 + \log 5 = \log 2 + 2 \times \log 3$$

 $\times \log 5 - 2 \times \log 3 = \log 2 - \log 5$

$$\times \log 5 - 2 \times \log 3 = \log 2 - \log 5$$

13. Change
$$\log_2(3x) = 5$$
 to exponential form.

A.
$$3x = 2^5$$

B.
$$3x = 5^2$$

C.
$$2 = (3x)^5$$

D.
$$2 = 3x^5$$

$$\lambda^5 = 3 \times$$

	Part B. Calculators allowed.
14.	A population grows continuously according to the formula $P = P_0 e^{kt}$, where P is the final population at the end of t years, P_0 is the initial population, and k is the annual growth rate. What will the population be at the end of 10 years if the initial population is 5000 and the annual growth rate is 3%? A. 6720 (.03)(10)
	B. 6749 C. 51523 D. 100428 In $e^4 = ? log_e$
15.	In 1872, Washington State experienced an earthquake of magnitude 6.8 on the Richter scale. Determine the magnitude on the Richter scale of an earthquake that is half as intense as the Washington State earthquake. 6.8 6.8 631000 - 315000
16.	Change to logarithmic form $a^3 = b$. A. $3 = \log_a b$ B. $3 = \log_b a$ C. $b = \log_a 3$ D. $a = \log_b 3$
17.	A population grows continuously according to the formula $P = P_0 e^{kt}$, where P is the final population at the end of t years, P_0 is the initial population and t is the annual growth rate. What will the population be at the end of 8 years if the initial population is 15 million and the annual growth rate is 4% ? A. 20.66 million B. 124.90 million C. 179.02 million D. 367.99 million

Part C. Written. Show all necessary work.

Solve algebraically
$$\log 2 - \log(x-1) = \log(x+1) - \log(x+17)$$
.

In a population of moths, 78 moths increase to 1000 moths in 40 weeks. What is the doubling time for this population of moths?

(Solve algebraically using logarithms. Answer accurate to at least 2 decimal places.)

$$2x+34 = x^{2}-1$$

$$0 = x^{2}-2x-35$$

$$= (x-7)(x+5)$$

$$x = 7 dr$$

$$3.68 n = 40$$

$$n = \frac{40}{3.68} = 10.9$$

$$y = y_{0}(a)$$

$$y = y_{0$$