Warmup 5.6 \#1-6 HW check webpage for solutions.
Evaluate the following indefinite integrals:

Recall that the only solutions to the differential equation $\frac{d y}{d t}=k y$ are $\quad y=y_{0} e^{k t}$
Newton's Law of Cooling states that the rate of cooling of an object is proportional to the temperature difference between the object and its surroundings (provided that this difference is not too large) This can
be illustrated with the following differential equation:
T = temperature

$$
T(0)=T_{0}
$$

$$
T_{0}-T_{s}=C \cdot e^{k(0)}
$$

$$
\begin{gathered}
\frac{d T}{d t}=k\left(T-T_{s}\right) \\
\int \frac{1}{T-T_{s}} d T=\int k d t
\end{gathered}
$$

$$
C=T_{0}-T_{s}
$$

constant.

C in a room that is kept at $20^{\circ} \mathrm{C}$.

1. Suppose that an object takes 40 minutes to cool from $30^{\circ} \mathrm{C}$ to $24^{\circ} \mathrm{C}$ in a roo
a) What was the temperature of the object 15 minutes after it was $30^{\circ} \mathrm{C}$?
b) How long will it take the object to cool down to $21^{\circ} \mathrm{C}$?
a) $T-20=(30-20) e^{-}$
$T_{s}=20^{\circ} \quad$ find " k "

$$
\begin{array}{rlrl}
T_{0} & =30 & T-T_{s} & =\left(T_{0}-T_{s}\right) e^{k t} \\
T & =24 & 24-20 & =(30-20) e^{40 k} \\
t & =40 & \frac{4}{10} & =e^{40 k} \\
\ln \frac{4}{10} & =40 k \quad \therefore k=-.02291
\end{array}
$$

$$
\begin{aligned}
& T=10 e^{(-.02291)(15)}+20 \\
& T=27.09^{\circ} \mathrm{C} \\
& \text { b) } \begin{aligned}
(21-20) & =(30-20) e^{-.02291 t} \\
1 & =10 e^{-.02291 t} \\
\ln \left(\frac{1}{10}\right) & =-.02291 \cdot t
\end{aligned}, \$ \text {. }
\end{aligned}
$$

$$
t=100.5 \text { minutes. }
$$

2. A roast turkey is taken from an oven when its temperature has reached $185^{\circ} \mathrm{F}$ and is placed on a table in a room where the temperature is $75^{\circ} \mathrm{F}$.
a) If the temperature of the turkey is $150^{\circ} \mathrm{F}$ after half an hour, what is the temperature after 45 minutes?
b) When will the turkey have cooled to $100^{\circ} \mathrm{F}$?
(a)

$$
\begin{aligned}
T-T_{s} & =\left(T_{0}-T_{s}\right) e^{k t} \\
150-75 & =(185-75) e^{k(30)} \\
\frac{75}{110} & =e^{30 k} \\
\ln \frac{75}{110} & =30 k \\
k & =-0.01277
\end{aligned}
$$

(b)

$$
\begin{aligned}
& T-75=(185-75) e^{-0.01277 \times 45} \\
& T=136.92^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
100-75 & =(185-75) e^{-.01277 t} \\
25 & =110 e^{-0.01277 t} \\
\ln \frac{25}{110} & =-0.01277 t \\
t & =116.02 \text { minutes }
\end{aligned}
$$

3. On a hot day, a thermometer is taken outside from an air conditioned room where the temperature is 21^{0} C. After one minute it reads $27^{\circ} \mathrm{C}$ and after 2 minutes it reads $30^{\circ} \mathrm{C}$
a) What is the outdoor temperature?
b) Sketch the graph of the temperature function.

$$
\begin{aligned}
& \text { after lain } \\
& \begin{array}{l}
\left(27-T_{s}\right)=\left(21-T_{s}\right) e^{i k} \quad \begin{array}{l}
\text { after } \quad 2 \mathrm{~min} \\
\left(30-T_{s}\right)=\left(21-T_{s}\right)
\end{array} \\
\frac{27-T_{s}}{21-T_{s}}=e^{k} \quad \frac{30-T_{s}}{21-T_{s}}=e^{2 k}=\left(e^{k}\right)^{2} \\
\frac{30-T_{s}}{21-T_{s}}=\left(\frac{\left.27-T_{s}\right)^{2}}{21-T_{s}}\right. \\
\left(30-T_{s}\right)\left(21-T_{s}\right)^{x}=\left(21-T_{s}\right)\left(27-T_{s}\right)^{2} \\
630-51 T_{s}+T_{s}^{2}=729-54 T_{s}+T_{s}^{2} \\
3 T_{s}=99 \quad T_{s}=33
\end{array}
\end{aligned}
$$

the outdoor temperature is $33^{\circ} \mathrm{C}$.
4. An investor puts $\$ 100000$ into a bank which pays 5% annual interest compounded continuously. She plans to withdraw money continuously from the account at the rate of $\$ 6000$ per year. If $A(t)$ is the amount of money at time t, then

$$
\frac{d A}{d t}=.05 \mathrm{~A}-6000
$$

a) Solve this equation for $A(t)$. Show your work.
b) When will the money run out?

$$
\begin{aligned}
\frac{d A}{d t} & =.05(A-120000) \\
\frac{1}{A-120000} d A & =.05 d t \\
\ln (A-120000) & =.05 t+C \\
A-120000 & =e^{.05 t+C} \\
A-120000 & =C \cdot e^{.05 t} \\
100000-120000 & =C(1) \\
C & =-20000
\end{aligned}
$$

5. At the age of 20,you make a deposit of $\$ 10000$ to your RRSP which is invested at 6% per year, compounded continuously. You intend to deposit money continuously at a rate of $\$ 3000$ per year. Assuming that the rate of interest remains 6%, the amount of money $A(t)$ at time t satisfies the equation:

$$
\frac{d A}{d t}=0.06 A+3000
$$

a) Solve this equation, and determine the amount of money in the your account when you turn 60 .
b) At the age of 60, you decide to withdraw money continuously at the rate of $\$ 15000$ per year. How long will the money in the account last?
c) If the money is to last you until you are 80 , what is the largest possible amount you could withdraw annually?

