Warmup 5.2

Determine (An identity crisis is not a good thing to experience at this point)
a) $\int e^{15 x} d x$
b) $\int\left(\frac{\sin 8 x}{3}-x^{\frac{2}{3}}\right) d x$
c) $\int\left(\sin ^{2} x+\cos ^{2} x\right) d x$
d) $\int\left(\cos ^{2} x-\sin ^{2} x\right) d x$
e) $\int \cot ^{2} x d x$

Initial Value Problems

A differential equation is any equation containing a derivative.

$$
y^{\prime}=2 x+1
$$

$$
3 \frac{d y}{d x}=4 y+2 x
$$

$$
2 d y=(3 x+2) d x
$$

An initial value problem is one where you are given the \qquad derivative and the value of the
\qquad $y \quad$ at a given point, and are asked to find the original function
\qquad sal function . The valving the differential equation of y that is given to you is called the initial value \qquad means to find all functions that satisfy the differential equation. Finding the solution that satisfies the initial condition means that we have \qquad solved the initial value problem.

Previous Problem	Initial Value Problem
Find the function $y=f(x)$ with a derivative of $\cos x+3 x$ and which passes through the point $(0,5)$.	Solve the initial value problem:
	Differential equation: $\frac{d y}{d x}=\cos x+3 x$
Initial condition: $y(0)=5$	

Solve the initial value problems

$$
\begin{aligned}
& \text { 1. } \quad \frac{d y}{d x}=9 x^{2}-7 x, \quad y(2)=10 \\
& 10=3(2)^{3}-\frac{7}{2}(2)^{2}+C \\
& y=\int 9 x^{2}-7 x d x \\
& y=3 x^{3}-\frac{7}{2} x^{2}+c \\
& y(2)=10 \\
& 10=24-14+c \\
& c=0 \\
& y=3 x^{3}-\frac{7}{2} x^{2} \\
& \text { 2. } \frac{d^{2} y}{d t^{2}}=-2 \cos t, \quad y(0)=4, \quad y^{\prime}(0)=-3 \\
& \frac{d y}{d t}=\int-2 \cos t d t \\
& \frac{d y}{d t}=-2 \sin t+C \\
& -3=-2 \sin (0)+c \quad c=-3 \\
& \frac{d y}{d t}=-2 \sin t-3 \\
& y=\int-2 \sin t-3 d t \\
& y=2 \cos t-3 t+c \\
& y(0)=4 \\
& 4=2 \cos (0)-3(0)+C \\
& 4=2(1)+c \\
& c=2 \\
& y=2 \cos t-3 t+2
\end{aligned}
$$

$$
\ln y \rightarrow y^{\prime} \cdot \frac{1}{y}
$$

3. Solve the differential equations: a) $\frac{d y}{d t}=\frac{y}{1}$

$$
\frac{d y}{y}=1 \cdot d t
$$

$$
\int \frac{1}{y} \cdot d y=\int 1 \cdot d t
$$

$$
\ln y=t+C
$$

$$
\text { b) } \begin{aligned}
\frac{d y}{d t} & =k y \\
\frac{d y}{y} & =k \cdot d t \\
\int \frac{1}{y} \cdot d y & =\int k \cdot d t \\
\ln y & =k t+C \\
e^{k n} y & =e^{k t+c} \\
y & =e^{k t+c} \\
y & =e^{k t} \cdot e^{9} \\
y & =c \cdot e^{k t}
\end{aligned}
$$

$$
\begin{aligned}
e^{\ln y} & =e^{t+c} \\
y & =e^{t+c} \\
y & =e^{t} \cdot e^{c} \text { still a constant } \quad y=k \cdot e^{t}
\end{aligned}
$$

The solution to the differential equation, $\frac{d y}{d t}=k y$ is $\quad y=c \cdot e^{k t}$
ie. The solution to $\frac{d y}{d t}=.05 y$ is $\quad y=c \cdot e^{.05 t}$
4. An amount of money, y_{0}, is invested at 6.9% compounded continuously. What does this mean?

$$
\begin{array}{lc}
Y_{0}=\text { amount at time }=0 & y=\text { amount } \\
\frac{d y}{d t}=0.069 . y & \frac{d y}{d t}=\text { rate at which amount }
\end{array}
$$

Model this situation as an initial value problem, and then determine the solution. is changing.

$$
\begin{aligned}
\frac{d y}{d t} & =0.069 . y \\
\int \frac{d y}{y} & =\int 0.069 d t \\
\ln y & =0.069 t+c \\
y & =e^{0.069 t+c}
\end{aligned}
$$

$$
y(0)=y_{0}
$$

$$
Y_{0}=c \cdot e^{0.069(0)}
$$

$$
Y_{0}=C
$$

$$
\Rightarrow y=c \cdot e^{0.069 t} \quad y=y_{0} e^{0.069 t}
$$

